<span id="mrgsh"></span>
    <button id="mrgsh"></button>

    江蘇考研

    輔導咨詢

    熱點推薦

    您現在的位置:首頁 > 考研 > 閱讀資料 > 數學 > 高等數學 >

    20考研數學必背定理:元函數微分法

    2019-10-10 19:08:13|
    【2020全國院校招生簡章】— 【2020全國各院校招生目錄】—- 【2020全國各院校參考書目】

     

      以下是江蘇中公考研為你整理的“20考研數學必背定理:元函數微分法”,了解2020考研招生簡章內容發布,關于江蘇考研免費復習資料、江蘇考研分數線等內容歡迎訪問江蘇研究生招生信息網
       ►元函數微分法及其應用

      1、多元函數極限存在的條件極限存在是指P(x,y)以任何方式趨于P0(x0,y0)時,函數都無限接近于A,如果P(x,y)以某一特殊方式,例如沿著一條定直線或定曲線趨于P0(x0,y0)時,即使函數無限接近某一確定值,我們還不能由此斷定函數極限存在。反過來,如果當P(x,y)以不同方式趨于P0(x0,y0)時,函數趨于不同的值,那么就可以斷定這函數的極限不存在。例如函數:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠0

      2、多元函數的連續性定義設函數f(x,y)在開區域(或閉區域)D內有定義,P0(x0,y0)是D的內點或邊界點且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)則稱f(x,y)在點P0(x0,y0)連續。

      性質(最大值和最小值定理)在有界閉區域D上的多元連續函數,在D上一定有最大值和最小值。

      性質(介值定理)在有界閉區域D上的多元連續函數,如果在D上取得兩個不同的函數值,則它在D上取得介于這兩個值之間的任何值至少一次。

      3、多元函數的連續與可導如果一元函數在某點具有導數,則它在該點必定連續,但對于多元函數來說,即使各偏導數在某點都存在,也不能保證函數在該點連續。這是因為各偏導數存在只能保證點P沿著平行于坐標軸的方向趨于P0時,函數值f(P)趨于f(P0),但不能保證點P按任何方式趨于P0時,函數值f(P)都趨于f(P0)。

      4、多元函數可微的必要條件一元函數在某點的導數存在是微分存在的充分必要條件,但多元函數各偏導數存在只是全微分存在的必要條件而不是充分條件,即可微=>可偏導。

      5、多元函數可微的充分條件定理(充分條件)如果函數z=f(x,y)的偏導數存在且在點(x,y)連續,則函數在該點可微分。

      6.多元函數極值存在的必要、充分條件定理(必要條件)設函數z=f(x,y)在點(x0,y0)具有偏導數,且在點(x0,y0)處有極值,則它在該點的偏導數必為零。

      定理(充分條件)設函數z=f(x,y)在點(x0,y0)的某鄰域內連續且有一階及二階連續偏導數,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,則f(x,y)在點(x0,y0)處是否取得極值的條件如下:(1)AC-B2>0時具有極值,且當A0時有極小值;(2)AC-B2

      7、多元函數極值存在的解法(1)解方程組fx(x,y)=0,fy(x,y)=0求的一切實數解,即可求得一切駐點。

      (2)對于每一個駐點(x0,y0),求出二階偏導數的值A、B、C.(3)定出AC-B2的符號,按充分條件進行判定f(x0,y0)是否是極大值、極小值。

      注意:在考慮函數的極值問題時,除了考慮函數的駐點外,如果有偏導數不存在的點,那么對這些點也應當考慮在內。

      以上就是江蘇中公考研小編為大家整理發布的“20考研數學必背定理:元函數微分法”,為了更好的進行考研備考復習,更多江蘇高校研究生考試報名時間、研究生報考條件、現場確認、高校招生計劃、專業目錄、高校參考書等研究生招生信息盡在江蘇中公考研研招信息欄目。

     注:本站稿件未經許可不得轉載,轉載請保留出處及源文件地址。
    (責任編輯:姜雨夢)
    關鍵詞閱讀

    免責聲明:本站所提供真題均來源于網友提供或網絡搜集,由本站編輯整理,僅供個人研究、交流學習使用,不涉及商業盈利目的。如涉及版權問題,請聯系本站管理員予以更改或刪除。

    嘎嘎导航